

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 806-816

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Layered perovskite-related ruthenium oxychlorides: crystal structure of two new compounds Ba₅Ru₂Cl₂O₉ and Ba₆Ru₃Cl₂O₁₂

N. Tancret, P. Roussel, and F. Abraham*

Laboratoire de Cristallochimie et Physiochimie du Solide, UMR CNRS 8012 ENSC, Université de Sciences et Technique de Lille, BP 108, Villeneuve d'Ascq Cedex 59652, France

Received 18 June 2003; received in revised form 11 September 2003; accepted 17 September 2003

Abstract

Single crystals of the title compounds were prepared using a BaCl₂ flux and investigated by X-ray diffraction methods using MoK α radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group $P6_3/mmc$, a = 5.851(1) Å, c = 25.009(5) Å, $\rho_{cal} = 4.94 \text{ g cm}^{-3}$, Z = 2 to a final $R_1 = 0.069$ for 20 parameters with 312 reflections for Ba₅Ru₂Cl₂O₉ and space group $P\overline{3}m1$, a = 5.815(1) Å, c = 14.915(3) Å, $\rho_{cal} = 5.28 \text{ g cm}^{-3}$, Z = 1 to a final $R_1 = 0.039$ for 24 parameters with 300 reflections for Ba₆Ru₃Cl₂O₁₂. The structure of Ba₅Ru₂Cl₂O₉ is formed by the periodic stacking along [001] of three hexagonal close-packed BaO₃ layers separated by a double layer of composition Ba₂Cl₂. The BaO₃ stacking creates binuclear face-sharing octahedra units Ru₂O₉ containing Ru(V). The structure of Ba₆Ru₃Cl₂O₁₂ is built up by the periodic stacking along [001] of four hexagonal close-packed BaO₃ layers separated by a double layer of composition Ba₂Cl₂. The ruthenium ions with a mean oxidation degree + 4.67 occupy the octahedral interstices formed by the four layers hexagonal perovskite slab and then constitute isolated trinuclear Ru₃O₁₂ units. These two new oxychlorides belong to the family of compounds formulated as [Ba₂Cl₂][Ba_{n+1}Ru_nO_{3n+3}], where *n* represents the thickness of the octahedral string in hexagonal perovskite slabs.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Ruthenium oxychloride; Hexagonal perovskite; Crystal structure

1. Introduction

Numerous compounds with structure considered as perovskite related demonstrate unusual and interesting properties such as ferroelectricity, oxide-ion conductivity, high-temperature superconductivity, colossal magnetoresistivity, and catalytic activity. In many of these compounds cubic-type perovskite anionic layers of formula $[A_{n-1}M_nO_{3n+1}]$, where *n* denotes the thickness of the layers in terms of MO_6 octahedra, are interleaved with positively charged layers leading to tetragonal or pseudotetragonal symmetry with an *a*-lattice parameter of the order of a_p (a_p = simple cubic perovskite unit-cell parameter). The main families are obtained for "fluorite-like" [Bi₂O₂]²⁺ layers (the Aurivillius series [1]) and rock-salt layers (the Dion—Jacobson [2] and the Ruddelsden–Popper series [3] for single [A'O] and double $[A'O]_2$ rock-salt layers, respectively) as cationic layers between the perovskite-type slices. The cubic perovskite and the cubic perovskite-type layers can be described by the stacking of compact hexagonal AO₃ layers in a sequence of **abc**, the small cations, B, occupying octahedral holes between the layers, the BO_6 octahedra sharing only corners. Hexagonal close packed in a sequence **ab** can be introduced in the stacking, leading to a huge quantity of various stacking sequences from entirely cubic (corner-shared octahedra) to entirely hexagonal (face-shared octahedra), depending on the size of both A and B ions and synthetic conditions. A typical example is BaRuO₃ which adopts different polytype structures depending on the synthetic conditions [4]. At atmospheric pressure, $BaRuO_3$ has a 9R structure with $(hhc)_3$ stacking sequence and contains Ru₃O₁₂ trimers of face-shared octahedra linked together by corner sharing. At 15 kbar, BaRuO₃ transforms to a 4H structure with $(hc)_2$ stacking sequence and contains Ru₂O₉ dimers of face-shared octahedra linked together

^{*}Corresponding author. Fax: +33-03-20-43-48-14.

E-mail address: francis.abraham@ensc-lille.fr (F. Abraham).

^{0022-4596/\$ -} see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2003.09.014

N. Tancret et al. | Journal of Solid State Chemistry 177 (2004) 806-816

by corner sharing. At 30 kbar, this structure transforms to a 6H structure with $(hcc)_2$ stacking sequence and contains Ru₂O₉ dimers of face-shared octahedra linked by corner sharing with a layer of isolated octahedra. Finally, a cubic 3C perovskite structure is expected for BaRuO₃ at about 120 kbar [4]. Various types of $[A_nX_m]$ layers with $(n + m \leq 4)$ can be introduced in the $[AO_3]$ stacking sequence leading to many original structures having hexagonal or rhombohedral symmetry with an alattice parameter of the order of $a_p\sqrt{2}$ and a *c*-parameter related to the stacking sequence (for a review, see Ref. [5]). Depending on the nature and the stoichiometry of the $[A_n X_m]$ layer, different intergrowth structures are obtained in which hexagonal perovskite $[A_{n+1}M_nO_{3n+3}]$ slices of n octahedra thickness are connected through various polyhedra sheets such as trigonal pyramids in the Ba₃ M_4O_9 (M = Sc, Y, Ln = Dy-Lu) compounds [6] or pairs of corner-shared tetrahedra in, for example, β -Ba₂ScAlO₅ [7], Ba₅In₂Al₂ZrO₁₃ [8] and Ba₅Co₅ClO₁₃ [9] and isotypic oxychlorides [10]. In other interesting cases, the $[A_{n+1}M_nO_{3n+3}]$ slabs are separated by cationic layers such as $[Ba_2O]$ in $Ba_5Ru_2O_{10}$ [11,12], $[Ba_2(O_2)]$ in Ba₅Ru₂O₉O₂ [12,13] containing peroxide anions, or [Ba₂Cl] in Ba₅Ru₂O₉Cl [14] or by double "rock salttype" cationic layers [BaCl]₂. In this last example, oxychlorides formulated $[Ba_2Cl_2] [Ba_{n+1}M_nO_{3n+3}]$ have already been reported for n = 2 (Ba₅RuTaO₉Cl₂ [15] and $Ba_5Ru_{1.6}W_{0.4}O_9Cl_2$ [16]), for n = 3 (Ba_6Ru_2 $PtO_{12}Cl_2$ [17], $Ba_6Ru_{2.5}Mn_{0.5}O_{12}Cl_2$ [18] and $Ba_6Nb_2IrO_{12}Cl_2$ [19]), for n = 4 ($Ba_7Ru_4O_{15}Cl_2$ [20]) and for n = 5 (Ba₈Ru_{3.33}Ta_{1.67}O₁₈Cl₂ [21]). Astonishingly, only the term n = 4 has been reported for ruthenium as the unique M cation in the octahedral interstices of the [BaO₃] layers stacking. In the present paper, we described the crystal structure of the ruthenium oxychlorides Ba5Ru2Cl2O9 and Ba6Ru3 Cl₂O₁₂ which adopt hexagonal 10- and 12-layers structures, respectively. A comparison is made with other barium ruthenium oxides and oxyhalides and in particular with an other form of Ba₅Ru₂Cl₂O₉ which has a very different structure [22].

2. Experimental

The starting materials, $BaCl_2 \cdot 2H_2O$ (Prolabo, Rectapur, 99%), $BaCO_3$ (Fisher, 99%) and Ru (Touzart & Matignon, 99%), were used as received. Several compositions of these reactants were mixed and heated at different temperatures between 1000°C and 1100°C (Table 1). After cooling to room temperature and dissolving the excess of $BaCl_2$ with hot water, black hexagonal-plate crystal pieces were found in most of the experiments. For each synthesis, several single crystals were tested on a single-crystal X-ray diffractometer. Hexagonal unit cells were always obtained with the

Table 1 Single-crystal synthesis conditions

$\begin{array}{l} BaCO_3/Ru/\\ BaCl_2\cdot 2H_2O\\ ratio \end{array}$	Temperature (°C)/ time(h)/cooling rate (°C/h)	Obtained single crystals
3/3/10 3/1/10 5/2/10 5/2/10 3/1/6	1100/48/24 1050/24/quenching 1000/80/quenching 1100/48/24 1100/48/24	$\begin{array}{c} Ba_{5}Ru_{2}Cl_{2}O_{9}\\ Ba_{6}Ru_{3}Cl_{2}O_{12}\\ BaRuO_{3}+Ba_{7}Ru_{4}Cl_{2}O_{15}\\ Ba_{7}Ru_{4}Cl_{2}O_{15}\\ Ba_{7}Ru_{4}Cl_{2}O_{15}\\ \end{array}$

same *a*-parameter ($a \approx 5.8$ Å) and a *c*-parameter depending on the synthesis conditions allowing the identification of the synthesized single crystals (Table 1). Several crystals were analyzed by energy dispersive spectroscopy using a JEOL JSM-5300 scanning microscope equipped with a PGT Digital Spectrometer, confirming the presence of Ba, Ru and Cl, except for the BaRuO₃ crystals, where no chlorine was found.

2.1. Crystal structure determination

For structure determinations, crystals of Ba₅Ru₂ Cl₂O₉ and Ba₆Ru₃Cl₂O₁₂ were selected, mounted on glass fibers and aligned on a Bruker SMART CCD X-ray diffractometer. Intensities were collected at room temperature using MoKa ($\lambda = 0.71073$ A) radiation selected by a graphite monochromator. The individual frames were measured using a ω -scan technique with an omega rotation of 0.3° and an acquisition time of $20 \, \text{s}$ per frame. A total of 1800 frames were collected covering the full sphere. After every data collection, the intensity data were integrated and corrected for Lorentz, polarization and background effects using the Bruker program SAINT [23]. Once the data processing was performed, the absorption corrections were computed using a semi-empirical method based on redundancy with the SADABS program [24]. Details of the data collection and refinement are given in Table 2. The hexagonal unit-cell parameters were refined to a = 5.851(1)Å, c = 25.009(5)Å and a = 5.815(1)Å, c = 14.915(3) A for Ba₅Ru₂Cl₂O₉ and Ba₆Ru₃Cl₂O₁₂, respectively.

Crystal structures were determined in the centrosymmetric $P6_3/mmc$ and $P\overline{3}m1$ space groups for $Ba_5Ru_2Cl_2O_9$ and $Ba_6Ru_3Cl_2O_{12}$, respectively, by direct methods using SIR97 program [25], which readily established the heavy atom positions (Ba, Ru, Cl). Oxygen atoms were localized from difference Fourier maps. The last cycles of refinement included atomic positions, anisotropic displacement parameters for all non-oxygen atoms, and isotropic displacement parameters for oxygen atoms. Full-matrix least-squares structure refinements against F were carried out using the JANA2000 [26] program.

Table 2 Crystal data, intensity collection and structure refinement parameters for Ba₅Ru₂Cl₂O₉ and Ba₆Ru₃Cl₂O₁₂

	$Ba_5Ru_2Cl_2O_9$	$Ba_6Ru_3Cl_2O_{12}$
Crystallographic data		
Formula weight $(g mol^{-1})$	1103.74	1390.15
Crystal system	Hexagonal	Hexagonal
Space group	$P6_3/mmc$	$P\bar{3}m1$
Unit-cell dimensions (Å)	a = 5.851(1)	a = 5.815(1)
	c = 25.009(5)	c = 14.915(3)
Cell volume ($Å^3$)	741.5(4)	436.8(2)
Ζ	2	1
Density, calculated $(g cm^{-3})$	4.94	5.28
<i>F</i> (000)	948	598
Intensity collection		
Wavelength (Å)	0.71073 (MoKα)	0.71073 (MoKα)
θ range (deg)	3.26-28.77	4.05-23.27
Data collected	$-7 \leq h \leq 7$	$-6 \leqslant h \leqslant 6$
	$-7 \leq k \leq 7$	$-6 \leqslant k \leqslant 6$
	$-32 \leq l \leq 32$	$-16 \leq l \leq 16$
No. of reflections measured	4553	2320
No. of independent reflections	421	416
Redundancy	10.81	5.58
No. of unique reflections $(I > 3\sigma(I))$	312	300
μ (MoK α) (mm ⁻¹)	15.416	16.786
$T_{\rm max}/T_{\rm min}$	0.491	0.526
$R(F^2)_{\rm int}$	0.0599	0.0472
Refinement		
No. of parameters	20	24
Weighting scheme	$1/\sigma^2$	$1/\sigma^2$
R(F) obs/all	0.0609/0.0886	0.0391/0.0572
wR(F) obs/all	0.0586/0.0591	0.0454/0.0457/
Max, min $\Delta \rho(e \text{ Å}^{-3})$	7.75/-7.89	5.48/-2.20

3. Crystal structure description and discussion

3.1. $Ba_5Ru_2Cl_2O_9$

The atomic coordinates and displacement parameters for Ba₅Ru₂Cl₂O₉ are given in Table 3. Selected bond lengths are listed in Table 4. Valence bond sums also reported in Table 4 were calculated using the expression of bond valence S_{ij} between two atoms *i* and *j* given by Brown [27], $S_{ii} = \exp(R_0 - R_{ii})/b$ were R_{ii} are the observed bond distances and R_0 and b are empirical constants. For these calculations, R_0 parameters listed by Brese and O'Keeffe's data [28] were used except for Ru^V–O bonds where the R_0 parameter ($R_0 = 1.888 \text{ Å}$) was taken from Dussarat et al. [29]. b was fixed to the commonly taken value, b = 0.37 Å [30]. The structure of $Ba_5Ru_2Cl_2O_9$ is shown in Fig. 1. It can be described as a perovskite-related compound with a 10-layer stacking along the c-axis of BaO₃ and BaCl layers in the sequence $(h'hhhh')_2$, where h is an hexagonal BaO₃ layer and h' a BaCl layer, still termed as hexagonal because of the Ba positions. The Cl atoms occupy the center of half the O₃

Table 3 Atomic coordinates and isotropic displacement parameters of BasRu₂Cl₂O₂

5	2 2)					
Atom	Wyck.	x	у	Ζ	$U_{\rm eq}$ or $U_{\rm iso}$	
Ba(1)	2 <i>d</i>	1/3	2/3	3/4	0.0114(8)	
Ba(2)	4f	1/3	2/3	0.33041(8)	0.0144(6)	
Ba(3)	4f	1/3	2/3	0.57753(9)	0.0282(7)	
Ru	4 <i>e</i>	0	0	0.30636(11)	0.0097(6)	
Cl	4f	1/3	2/3	0.4517(5)	0.091(6)	
O(1)	6 <i>h</i>	0.150(1)	0.299(3)	1/4	0.009(4)	
O(2)	12k	0.321(2)	0.160(1)	0.3441(5)	0.017(3)	
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ba(1)	0.0063(9)	0.0063(9)	0.021(2)	0.0031(4)	0	0
Ba(2)	0.0118(7)	0.0118(7)	0.019(1)	0.0059(3)	0	0
Ba(3)	0.0314(9)	0.0314(9)	0.022(1)	0.0157(5)	0	0
Ru	0.0066(7)	0.0066(7)	0.016(1)	0.0033(3)	0	0
Cl	0.124(9)	0.124(9)	0.026(7)	0.062(4)	0	0

Note. The U_{eq} values are defined by $U_{eq} = 1/3(\sum_i \sum_j U_{ij}a_i^*a_j^*a_ia_j)$. The anisotropic displacement factor exponent takes the form $-2\pi^2[h^2a^{*2}U_{11} + \cdots + 2hka^*b^*U_{12}]$.

triangles of a BaO₃ layer (Fig. 1), while the ruthenium atom occupy the octahedral sites created by the three BaO₃ layers, leading to the formation of Ru₂O₉ dimers of face-shared octahedra. Thus the structure can be described as resulting of the intergrowth of hexagonal perovskite-type blocks (Ba₃Ru₂O₉)²⁻ with rock salt-type double layers (Ba₂Cl₂)²⁺. This compound is isostructural with Ba₅Ru_{1.6}W_{0.4}Cl₂O₉ [16] and Ba₅RuTaCl₂O₉ [15] even if the last compound has been refined in the noncentrosymmetric *P*6₃22 space group, the difference involving only the O(2) oxygen atom coordinates. In Ba₅Ru_{1.6}W_{0.4}Cl₂O₉ and Ba₅RuTaCl₂O₉ the Ru and *M* atoms (*M*=W, Ta) are disordered on the two octahedral sites of the (Ru,*M*)₂O₉ dimeric units.

In $Ba_5Ru_2Cl_2O_9$ the calculated valence bond sum for Ru (4.90) is in good agreement with the expected value of 5 deduced from electroneutrality. The distance between the two Ru(V) within the Ru_2O_9 dimer (2.819(4) Å) is shorter than the distance observed in the disordered $(Ru, M)_2O_9$ units in the isostructural compounds, 2.872 and 2.944 Å for M = W and Ta, respectively. This value is intermediate between the Ru-Ru distances reported in Ru₂O₁₀ pairs of edgeshared octahedra with strong metal-metal bonding in La₄Ru₆O₁₉ [31] (2.488 Å) and no metal-metal bonding in La₃Ru₃O₁₁ [32] (2.990 Å). In numerous ruthenium oxides containing Ru₂O₉ pairs of face-shared octahedra, hereafter FSO, the Ru-Ru bond length is strongly related to the mean oxidation degree (MOD) of Ru (Table 5). The main series with formula $Ba_3MRu_2O_9$ with M a mono-, di-, tri- or tetravalent metal adopts the 6H-(cch)₂ perovskite-related structure, the Ru₂O₉ pairs are connected by corner sharing with a single layer of MO_6 isolated octahedra (Fig. 2a). For M^{4+} cations, compounds are known for M = Ce, Pr, Tb [33] and

Table 4 Bond distances (Å) and bond valences S_{ij} in Ba₅Ru₂Cl₂O₉

		S_{ij}			S_{ij}
$Ba(1)-O(1) (6 \times)$	2.93(1)		Ru–Ru	2.819(4)	
Ba(1)-O(2) (6 ×)	2.94(1)	0.173	Ru–O(1) $(3 \times)$	2.07(1)	0.611
	$\sum S_{ii} =$	2.100	Ru-O(2) (3 ×)	1.88(1)	1.022
$Ba(2) - O(1) (3 \times)$	2.74(1)	0.296		$\sum S_{ii} =$	4.899
$Ba(2) - O(2) (6 \times)$	2.95(1)	0.164	$O(1)-O(1) (2 \times)$	2.62(2)	
$Ba(2)-Cl(1 \times)$	3.03(1)	0.399	$O(1) - O(2) (4 \times)$	2.83(1)	
	$\sum S_{ii} =$	2.271	$O(2)-O(2)(2 \times)$	2.81(2)	
$Ba(3) - O(2) (3 \times)$	2.63(1)	0.399			
Ba(3)–Cl (3 ×)	3.46(1)	0.125			
$Ba(3)-Cl(1 \times)$	3.15(1)	0.288			
	$\sum S_{ii} =$	1.860			
$O(1)-Ba(1)(2 \times)$	2.93(1)	0.177	O(2)-Ba(1)	2.94(1)	0.173
$O(1)-Ba(2)(2 \times)$	2.74(1)	0.296	$O(2)-Ba(2)(2 \times)$	2.95(1)	0.164
O(1)-Ru (2 ×)	2.07(1)	0.611	$O(2)-Ba(3)(2 \times)$	2.63(1)	0.399
	$\sum S_{ii} =$	2.168	O(2)–Ru	1.88(1)	1.022
Cl–Ba(2)	3.03(1)	0.399		$\sum S_{ii} =$	1.925
Cl-Ba(3)	3.15(1)	0.288		<u> </u>	
$Cl-Ba(3)(3 \times)$	3.46(1)	0.125			
× / × /	$\sum S_{ii} =$	1.062			

Fig. 1. Projection along [010] of the crystal structure of $Ba_5Ru_2Cl_2O_9$ with the BaO_3 and BaCl layers stacked along [001].

M=Ti [34]. In those compounds, the ruthenium is Ru(IV), the usual oxidation state of Ru, and the metalmetal bond is strong, the Ru–Ru distance being in the range 2.48–2.52 Å, is significant smaller than in the metal itself (2.65 Å) and comparable with the value in La₄Ru₆O₁₉ [31]. However, the distance remains signifi-

cantly greater than the distance between two BaO3 layers (about 2.4 Å). For M^{3+} , Ba₃MRu₂O₉ compounds have been reported for all the other lanthanide ions [35-38] and for M = Y, In [35,37,39], the MOD of Ru is +4.5 and the metal-metal bond remains strong, the Ru–Ru distance is in the range 2.52–2.56 Å. For M^{2+} cations (M = Ni, Co, Zn, Cu [36,39,40] and M = Mg, Ca, Cd, Sr [41–43]), the ruthenium is Ru(V), the metalmetal bond, although weaker, remains strong (the Ru-Ru distance is in the range 2.65–2.70 Å). Finally, a compound of this series with $M^+ = Na^+$ has been recently characterized [44,45], the MOD of Ru is +5.5and the metal-metal distance is significantly longer (2.745 Å). Thus the Ru-Ru distance within the FSO dimer in this large isostructural series increases with the oxidation degree of the ruthenium atom in accordance with the electrostatic repulsion between the charged cations. The sequence of BaO₃ layers in 4H-BaRuO₃ is $(ch)_2$, the Ru₂O₉ dimers are linked together directly by corner sharing (Fig. 2b), the intradimer Ru–Ru distance (2.537(1) A) [46] is slightly out of the range previously discussed for Ru(IV). In Ba₄NaRu₃O₁₂ [47] which adopts a 8H structure with a $(ccch)_2$ stacking sequence the Ru₂O₉ pairs are linked together by corner sharing with a double layer of vertex-shared NaO₆ and RuO₆ octahedra (Fig. 2c); the Ru-Ru distance within the pair (2.66(2) Å) is in the range reported for Ru(V) in the $Ba_3MRu_2O_9$ series. Ba_2BiRuO_6 crystallize with a similar distorted 8H structure [48] and the Ru-Ru distance (2.679(5) Å) within the Ru₂O₉ pairs linked by a double layer of corner-shared BiO_6 octahedra (Fig. 2d) is also in the range for Ru(V) and close to the value calculated in $Ba_5Na_2Ru_3O_{14}$ (2.676(1)Å) [49]. In this last compound, $Ru(V)_2O_9$ pairs are linked through corner sharing by

Table 5 Compounds containing Ru₂O₉ dimers made from face-shared RuO₆ octahedra

Compound		MOD for Ru	Ru–Ru	Structure	Ref
$\operatorname{Ba_3}M^{4+}\operatorname{Ru_2O_9}$	M=Ce	4	2.481(3)	6H-(<i>hcc</i>) ₂	[33]
	$M = \Pr$	4	2.486(2)	$6H-(hcc)_2$	[33]
	M = Tb	4	2.493(6)	6H-(hcc) ₂	[33]
	M=Ti	4	2.515(6)	$6H-(hcc)_2$	[34]
$\operatorname{Ba_3}M^{3+}\operatorname{Ru_2O_9}$	M = Y	4.5	2.540(2)/2.526(5)	$6H-(hcc)_2$	[35,37]
	M = In	4.5	2.563(4)/2.517(7)	6H-(hcc) ₂	[35,39]
	M = La	4.5	2.554(3)	$6H-(hcc)_2$	[35]
	$M = \mathrm{Sm}$	4.5	2.536(3)	$6H-(hcc)_2$	[35]
	M = Eu	4.5	2.537(4)	$6H-(hcc)_2$	[35]
	M = Lu	4.5	2.549(3)	$6H-(hcc)_2$	[35]
	M = Gd	4.5	2.527(3)/2.534(5)	$6H-(hcc)_2$	[36,37]
	M = Ho	4.5	2.547(3)	$6H-(hcc)_2$	[36]
	$M = \mathrm{Er}$	4.5	2.545(3)	$6H-(hcc)_2$	[36]
	M = Tb	4.5	2.543(3)	$6H-(hcc)_2$	[36]
	M = Yb	4.5	2.547(3)/2.541(3)	$6H-(hcc)_2$	[36,37]
	M = Nd	4.5	2.524(4)	$6H-(hcc)_2$	[38]
$Ba_3M^{2+}Ru_2O_9$	M = Ni	5	2.681(2)/2.686(4)	6H-(<i>hcc</i>) ₂	[39,40]
	M = Co	5	2.677(7)/2.684(4)	6H-(hcc) ₂	[39,40]
	M = Zn	5	2.685(2)	$6H-(hcc)_2$	[40]
	M = Cu	5	2.701(4)	6H-(hcc) ₂	[39]
	M = Mg	5		$6H-(hcc)_2$	[41]
	M = Ca	5	/2.652	$6H-(hcc)_2$	[41,42]
	M = Cd	5		$6H-(hcc)_2$	[41]
	$M = \mathrm{Sr}$	5	/2.676(6)	6H-(<i>hcc</i>) ₂	[41,43]
$\operatorname{Ba}_3M^+\operatorname{Ru}_2\operatorname{O}_9$	M=Na	5.5	2.748(2)/2.745(1)	$6H-(hcc)_2$	[44,45]
4H-BaRuO ₃		4	2.537(1)	4H-(<i>hc</i>) ₂	[46]
Ba4NaRu3O12		5	2.66(2)	$8H-(hccc)_2$	[47]
Ba2BiRuO6		5	2.679(5)	$8H-(hccc)_2$	[48]
Ba ₅ Na ₂ Ru ₃ O ₁₄		5	2.676(1)	10H-(cchcc)2	[49]
$Ba_5Ru_2O_{10}$		5	2.735(8)	8H	[11,12]
$Ba_5Ru_2O_9(O)_2$		5	2.748(2)	8H	[12,13]
Ba5Ru2O9Cl		4.5	2.763(3)	8H	[14]
$\mathrm{Ba}_{6}\mathrm{Na}_{2}\mathrm{Ru}_{2}X_{2}\mathrm{O}_{17}$	X = V, Cr, Mn, P, As	5	2.654(4)-2.734(4)	12H	[50]

strings of three corner-sharing lacunar RuO₆ and NaO₆ octahedra; in these strings of three the two outer octahedra are occupied by Na (Fig. 2e), the metal atoms Ru and Na occupying the octahedral sites of a 10H stacking of BaO₃ layers with the $(c'chcc')_2$ sequence where c' denotes an oxygen-deficient BaO₃ layer [49]. In Ba₅Ru₂Cl₂O₉ the Ru₂O₉ dimers are no longer linked by corner sharing with octahedra. Indeed, the $[Ba_3Ru_2O_9]^{2-}$ slices containing the Ru_2O_9 pairs are separated by $[BaCl]_2$ layers and the Ru(V)-Ru(V)distance is significantly longer (2.819(4)Å) (Fig. 3a). This value is comparable to those calculated in Ba₅Ru₂O₁₀ [11,12] and Ba₅Ru₂O₉(O₂) [12,13] in which the double $[Ba_2Cl_2]^{2+}$ layers are substituted by single $[Ba_2O]^{2+}$ and $[Ba_2(O_2)]^{2+}$ layers, respectively (Figs. 3b and c). It is also comparable to the value observed in Ba₅Ru₂O₉Cl [14] where the cationic layer is replaced by a [Ba₂Cl]³⁺ layer (Fig. 3d) leading to a MOD for Ru of +4.5. The recently investigated series $Ba_6Ru_2Na_2X_2O_{17}$

(X=V, Cr, Mn, P, As) [50] is also interesting. The $[Ba_3Ru_2O_9]$ slabs containing the FSO Ru_2O_9 pairs are flanked on both sides by a layer of NaO₆ octahedra that share corners with XO₄ tetrahedra (Fig. 3e). In this case, the Ru(V)–Ru(V) distance vary in the range from 2.654 to 2.734 A depending on the nature of the X atom. Thus, the Ru-Ru distance within the FSO dimer increases with the oxidation degree of the ruthenium atom in accordance with the electrostatic repulsion. However, for Ru(V), for which no metal-metal bond is expected, the Ru-Ru distance is also influenced by the kind of linkage between the dimers and by the chemical nature of the element outside of the dimer-containing lavers. Indeed, those elements play a role on the electrostatic attraction of the dimeric ruthenium atoms.

An other variety of $Ba_5Ru_2Cl_2O_9$, orthorhombic, with a drastic different structure has already been published [22]. This structure contains also isolated FSO Ru_2O_9

Fig. 2. Crystal structure of hexagonal perovskite-related compounds containing Ru_2O_9 dimeric FSO units (a) $Ba_3MRu_2O_9$, (b) 4H-BaRuO₃, (c) $Ba_4NaRu_3O_{12}$, (d) Ba_2BiRuO_6 , and (e) $Ba_5Na_2Ru_3O_{14}$.

Fig. 3. Crystal structure of hexagonal perovskite-related compounds containing $[Ba_3Ru_2O_9]$ slabs stacked with (a) $[BaCl]_2$ double layers in $Ba_5Ru_2Cl_2O_9$, (b) $[Ba_2O]$ layers in $Ba_5Ru_2O_{10}$, (c) $[Ba_2(O_2)]$ layers in $Ba_5Ru_2O_9(O_2)$, (d) $[Ba_2Cl]$ layers in $Ba_5Ru_2ClO_9$, and (e) complex $Ba_3Na_2X_2O_8$ slabs in $Ba_6Ru_2Na_2X_2O_{17}$.

dimeric units with comparable Ru–Ru distance (2.726 Å) but no layers are apparent (Fig. 4).

In the title compound, the hexagonal $Ba_5Ru_2Cl_2O_9$, the Ba ions are distributed into three crystrallographic sites: Ba(1) that pertains to the BaO_3 layer at the middle of the $(Ba_3Ru_2O_9)^{2-}$ slab adopts the coordination of metal itself in the hexagonal compact close-packed structure. It can thus be described as an hexagonal capped trigonal prism with twelve oxygen atoms at about 2.93 Å. Ba(2) and Ba(3) are both coordinated by oxide and chloride ions. In the Ba(2) coordination polyhedron, an oxygen triangle is replaced by one

chlorine atom leading to a shortening of the opposite Ba–O bonds (2.74 Å). Moreover, in Ba(3) the six oxygens of the Ba-containing plane are replaced by three chlorine atoms leading to a supplementary shortening of the remaining Ba–O bonds (Fig. 5). The valence bond sums calculated for Ba, O and Cl atoms are consistent with the formal valences of Ba²⁺, O²⁻ and Cl⁻ (Table 4). As already observed in all the compounds containing BaCl layers [15–21], the U_{11} and U_{22} atomic displacement parameters of the chlorine atom are very large corresponding to a high vibration of the Cl in the (001) plane due to the replacement of three oxygen

Fig. 4. Crystal structure of orthorhombic $Ba_5Ru_2Cl_2O_9$ view along [010].

atoms of a BaO_3 layer by only one Cl atom at the center of the O_3 triangle in a BaCl layer.

3.2. Ba₆Ru₃Cl₂O₁₂

The atomic coordinates and displacement parameters for $Ba_6Ru_3Cl_2O_{12}$ are given in Table 6. Selected bond lengths with valence bonds are listed in Table 7. The structure of $Ba_6Ru_3Cl_2O_{12}$ is shown in Fig. 6. It is based on a 12-layer (*h'hhhhh'*)₂ close-packing along the *c*-axis of BaO_3 and BaCl layers. The ruthenium atoms occupy the octahedral sites created by the four BaO_3 layers resulting in the formation of Ru_3O_{12} columns of three face-shared octahedra. Thus, the structure can be described as resulting of the intergrowth of hexagonal

Atom	Wyck.	x	у	Ζ	$U_{\rm eq}$ or $U_{\rm iso}$	
Ba(1)	2d	2/3	1/3	0.9202(1)	0.0120(7)	
Ba(2)	2d	2/3	1/3	0.2177(2)	0.0156(7)	
Ba(3)	2d	2/3	1/3	0.6242(1)	0.0215(8)	
Ru(1)	2c	0	0	0.1780(2)	0.012(1)	
Ru(2)	1 <i>a</i>	0	0	0	0.008(2)	
Cl	2d	2/3	1/3	0.4169(9)	0.068(5)	
O(1)	6 <i>i</i>	0.162(1)	-0.162(1)	0.2392(8)	0.014(3)	
O(2)	6 <i>i</i>	0.156(1)	-0.156(1)	0.9184(8)	0.012(3)	
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
Ba(1)	0.0076(8)	0.0076(8)	0.021(1)	0.0038(4)	0	0
Ba(2)	0.0104(8)	0.0104(8)	0.026(1)	0.0052(4)	0	0
Ba(3)	0.0219(9)	0.0219(9)	0.021(2)	0.0110(5)	0	0
Ru(1)	0.008(1)	0.008(1)	0.020(2)	0.0040(5)	0	0
Ru(2)	0.004(1)	0.004(1)	0.017(2)	0.0022(7)	0	0
Cl	0.086(6)	0.086(6)	0.032(8)	0.043(3)	0	0

Note. The U_{eq} values are defined by $U_{eq} = 1/3(\sum_i \sum_j U_{ij}a_i^* a_i^* a_i a_j)$. The anisotropic displacement factor exponent takes the form $-2\pi^2 [h^2 a^{*2} U_{11} + \dots + 2hka^* b^* U_{12}]$.

Fig. 5. Schematic view for barium oxychloride and oxide polyhedra of $Ba_5Ru_2Cl_2O_9$: (a) BaO_{12} for Ba(1), (b) BaO_9Cl for Ba(2), and (c) BaO_3Cl_4 for Ba(3). The same polyhedra coordination are obtained in $Ba_6Ru_3Cl_2O_{12}$ for Ba(1), Ba(2) and Ba(3), respectively.

Table 7 Bond distances (Å) and bond valences S_{ij} in Ba₆Ru₃Cl₂O₁₂

		S_{ij}			S_{ij}	
$Ba(1)-O(1) (3 \times)$	2.94(1)	0.173	Ru(1)–Ru(2)	2.656(3)		
$Ba(1) - O(2) (6 \times)$	2.910(5)	0.187			Ru ^{IV}	Ru ^V
$Ba(1)-O(2) (3 \times)$	3.00(1)	0.147	$Ru(1)-O(1) (3 \times)$	1.869(9)	0.910	1.053
	$\sum S_{ii} =$	2.082	Ru(1)-O(2) (3 ×)	2.13(1)	0.449	0.520
$Ba(2)-O(1) (6 \times)$	2.925(8)	0.180		$\sum S_{ii} =$	4.077	4.72
$Ba(2) - O(2) (3 \times)$	2.70(1)	0.330	Ru(2)-O(2) (6 ×)	1.99(1)	0.656	0.759
$Ba(2)-Cl(1 \times)$	2.97(1)	0.469		$\sum S_{ii} =$	3.936	4.554
	$\sum S_{ii} =$	2.219		<u> </u>		
$Ba(3) - O(1) (3 \times)$	2.67(1)	0.358	$O(1)-O(1)(2 \times)$	2.99(1)		
$Ba(3)-Cl(3 \times)$	3.41(1)	0.143	$O(1) - O(1) (2 \times)$	2.83(1)		
$Ba(3)-Cl(1 \times)$	3.09(1)	0.339	$O(1) - O(2) (2 \times)$	2.85(1)		
	$\sum S_{ii} =$	1.840	$O(2) - O(2) (2 \times)$	2.72(1)		
	<u> </u>		$O(2) - O(2) (2 \times)$	2.90(1)		

Table 8

Fig. 6. Projection along [010] of the crystal structure of $Ba_6Ru_3Cl_2O_{12}$ with the BaO_3 and BaCl layers stacked along [001].

perovskite blocks $(Ba_4Ru_3O_{12})^{2-}$ with double layer $(Ba_2Cl_2)^{2+}$. This compound is isostructural with $Ba_6Ru_2PtO_{12}Cl_2$ [17], $Ba_6Ru_{2.5}Mn_{0.5}O_{12}Cl_2$ [18] and $Ba_6Nb_2IrO_{12}Cl_2$ [19] where two different metals are disordered on the three octahedral sites of the M_3O_{12} trimeric units. Trimeric FSO Ru_3O_{12} units have been evidenced for the first time in 9R-BaRuO₃. The 9R-BaRuO₃ structure has been firstly refined by Donohue et al. from single-crystal data collected on precession photographs to R=11.8% from 216 independent reflections [51]. Refinements from neutron powder data [52] and X-ray powder data [53] have been recently reported. In the course of our study, good

Atomic coordinates and anisotropic displacement parameters of 9R-BaRuO₃

Atom	Wyck.	x	У	Z	$U_{\rm eq}$ or $U_{\rm iso}$	
Ba(1)	6 <i>c</i>	-1/3	1/3	0.05122(5)	0.0106(3)	
Ba(2)	3 <i>b</i>	1/3	-1/3	1/6	0.0104(3)	
Ru(1)	6 <i>c</i>	0	0	0.117029(6)	0.0077(3)	
Ru(2)	3 <i>a</i>	0	0	0	0.0081(4)	
O(1)	9 <i>d</i>	1/3	1/6	1/6	0.013(2)	
O(2)	18 <i>h</i>	-0.3111(9)	-0.1556(5)	0.0584(2)	0.009(1)	
	U_{11}	<i>U</i> ₂₂	U ₃₃	U_{12}	U_{13}	U ₂₃
Ba(1)	0.0090(3)	0.0090(3)	0.0137(5)	0.0045(2)	0	0
Ba(2)	0.0082(4)	0.0082(4)	0.0146(6)	0.0041(2)	0	0
Ru(1)	0.0067(4)	0.0067(4)	0.0097(6)	0.0033(2)	0	0
Ru(2)	0.0080(5)	0.0080(5)	0.0085(8)	0.0040(3)	0	0

Table 9 Bond Distances (Å) in 9R-BaRuO₃

Ba(1)–O(1) $(3 \times)$	2.996(1)	Ru(1)–Ru(2)	2.527(1)
Ba(1)–O(2) $(6 \times)$	2.884(5)	$Ru(1)-O(1)(3 \times)$	1.9771(7)
Ba(1)–O(2) $(3 \times)$	2.957(5)	Ru(1)–O(2) $(3 \times)$	2.001(6)
$Ba(2)-O(1) (6 \times)$	2.877(5)	Ru(2)-O(2) (6 ×)	1.999(6)
$Ba(2) - O(2) (6 \times)$	2.933(5)	$O(1) - O(1) (4 \times)$	2.878(6)
		O(1)-O(2) (4 ×)	2.837(5)
		$O(2)-O(2) (2 \times)$	2.686(7)
		$O(2)-O(2) (2 \times)$	2.962(7)

quality single crystals of 9R- $BaRuO_3$ have been obtained and we have thus refined the structural parameters from single-crystal intensities collected using a Bruker SMART CCD X-ray diffractometer. The results are reported in Tables 8 and 9. In 9R- $BaRuO_3$ the three octahedral strings are corner shared (Fig. 7a). In $Ba_4Ru_3O_{10}$ described both in monoclinic [29] and orthorhombic [54] cells, FSO Ru_3O_{12} units are twodimensionally connected via terminal corners to form corrugated layers (Fig. 7b). In $Ba_4ZrRu_3O_{12}$, the trimers are connected through a single layer of ZrO_6 octahedra by corner sharing [55] (Fig. 7c). In these two Ru(IV) trioctahedra strings-containing compounds the Ru–Ru distances are comparable (Table 10). In $Ba_6Ru_3Cl_2O_{12}$, the MOD of Ru is +4.67, the Ru–Ru bonds within the Ru₃O₁₂ entities are significantly longer and comparable

Fig. 7. Crystal structure of hexagonal perovskite-related compounds containing Ru_3O_{12} strings of face shared octahedral: (a) 9R-BaRuO₃, (b) $Ba_4Ru_3O_{10}$, (c) $Ba_4ZrRu_3O_{12}$, and (d) $Ba_5Ru_3O_{12}$.

Table 10 Compounds containing Ru₂O₁₂ trimers made from face-shared RuO₆ octahedra

to the values obtained in $Ba_5Ru_3O_{12}$ which contains isolated Ru₃O₁₂ trioctahedra groups in which part of ruthenium was replaced by platinum [29] (Fig. 7d). In Ba₅Ru₃O₁₂, average Ru–O distances and valence bond calculations indicated that the trimeric unit corresponds to Ru(V)-Ru(IV)-Ru(V). In $Ba_6Ru_2PtO_{12}Cl_2$ [17] and Ba₆Nb₂IrO₁₂Cl₂ [19] metal ordering within the trimers unambiguously indicated a M(V)-M(IV)-M(V) repartition. In contrast, due to the fact that in Ba₆Ru₃Cl₂O₁₂ the average Ru(1)–O distance is slightly higher than the Ru(2)-O(2) distance, the valence bond sums calculations using $R_0 = 1.834$ for Ru(IV) [28] and $R_0 = 1.888$ for Ru(V) [29] does not permit to determine the charge repartition on the three sites. In fact another possibility is a substantial delocalization leading to charge averaging. Although the distortion of the central $Ru(2)O(2)_6$ octahedron is small, the terminal $Ru(1)O(2)_3O(1)_3$ octahedra are strongly distorted with, as generally observed in FSO di- or tri-octahedra units, three shortest distances with common oxygens and three longer with non-shared oxygens. Note that the difference between the two types of Ru-O bonds is particularly significant in the present oxychloride.

Many compounds have been obtained from the reaction of Ru or RuO₂ and BaCO₃ in BaCl₂ as a flux: 9R-BaRuO₃ ([46], this work), 4H-BaRuO₃ [46], O-Ba₅Ru₂Cl₂O₉ (O stands for orthorhombic) [22], H-Ba₅Ru₂Cl₂O₉ (H stands for hexagonal) (this work), $Ba_5Ru_2ClO_9$ [14], $Ba_6Ru_3Cl_2O_{12}$ (this work) and Ba₇Ru₄Cl₂O₁₅ [20]. The compounds H-Ba₅Ru₂Cl₂O₉, $Ba_6Ru_3Cl_2O_{12}$, and $Ba_7Ru_4Cl_2O_{15}$ are the terms n = 2, 3, 4 of the series $[Ba_2Cl_2] [Ba_{n+1}M_nO_{3n+3}]$. The finding of "high pressure form" 4H-BaRuO₃ crystals, mixed with 9R-BaRuO₃ crystals in an ambient pressure preparation using BaCl₂ [46] could result from the rearrangement of some oxychlorides. In fact 9R-BaRuO₃ crystals could result from Ba₆Ru₃Cl₂O₁₂ by removing of the Ba₂Cl₂ layers and connecting the octahedra (with removing of the common BaO₃ layer) from two successive $[Ba_{n+1}M_nO_{3n+3}]$ slices (Fig. 8a). In this way, 4H-BaRuO3 crystals could be obtained from H-Ba₅Ru₂Cl₂O₉, Ba₅Ru₂ClO₉ and Ba₇Ru₄Cl₂O₁₅

compounds contain	sompounds containing reasons made from race shared reach octained a							
Compound	Ru–Ru	$Ru_M - O_M^*$	$\operatorname{Ru}_T - \operatorname{O}_M^*$	$Ru_T - O_T^*$	$\langle Ru_T - O \rangle$	Ref.		
BaRuO ₃	2.55	2.00	2.02	1.96	1.99	[51]		
2	2.530	2.005	1.974	2.007	2.000	[52]		
	2.543	1.984	2.056	1.967	2.011	[53]		
	2.528	2.006	2.008	1.997	2.003	This work		
Ba ₄ Ru ₃ O ₁₀	2.568/2.563	2.042/2.024	2.111/2.049	1.910/1.942	2.010/1.996	[29,54]		
Ba ₄ ZrRu ₃ O ₁₂	2.529	2.009	2.013	1.974	1.993	[55]		
$Ba_5Ru_3O_{12}$	2.587/2.676	2.004	2.080/2.092	1.881/1.870	1.981/1.981	[29]		
$Ba_6Ru_3Cl_2O_{12}\\$	2.656	1.987	2.128	1.871	2.000	This work		

*Label diagram for the Ru_3O_{12} dimer $(O_T)_3$ - Ru_T - $(O_M)_3$ - Ru_M - $(O_M)_3$ - Ru_T - $(O_T)_3$.

Fig. 8. Formation of various types of BaRuO₃ from $[Ba_2Cl_2]$ $[Ba_{n+1}Ru_nO_{3n+3}]$ by removing of the Ba₂Cl₂ layers. (a) 9R structure starting from Ba₆Ru₃Cl₂O₁₂, (b) 4H structure starting from Ba₅Ru₂Cl₂O₉, Ba₅Ru₂Cl₀O₉ or Ba₇Ru₄Cl₂O₁₅, and (c) 15R structure starting from Ba₈Ru₄Cl₂O₁₈.

(Fig. 8b). Up today no single crystal of the term n = 5 of the [Ba₂Cl₂] [Ba_{n+1}Ru_nO_{3n+3}] series has been isolated, however, the corresponding compound Ba₈Ru_{3.3}Ta_{1.67} Cl₂O₁₈ with Ru and Ta disordered in the octahedra has been characterized [21]. Removal of the Ba₂Cl₂ layer from the ruthenium compound would result in a new form of BaRuO₃ with a 15R structure with (*hchcc*)₃ sequence of BaO₃ layers (Fig. 8c), this sequence has already been evidenced in SrMn_{0.9}Fe_{0.1}O₃ [56].

4. Conclusion

Single crystals of the terms n = 2 and 3 of the series $[Ba_2Cl_2]$ $[Ba_{n+1}Ru_nO_{3n+3}]$ have been isolated. The $[Ba_{n+1}Ru_nO_{3n+3}]$ slabs contain, respectively, Ru_2O_9 and Ru_3O_{12} entities resulting from face-shared octahedra for $Ba_5Ru_2Cl_2O_9$ and $Ba_6Ru_3Cl_2O_{12}$, respectively. The mean oxidation state of Ru is +5 and +4.67, respectively. The term n = 4 has previously been reported and other terms are expected. Attempts to obtain intergrowth structures with mixed terms are also planed.

References

[1] B. Aurivillius, Ark. Kemi. 1 (1949) 463.

[2] M. Dion, M. Ganne, M. Tournoux, Mater. Res. Bull. 16 (1981) 1429;

A.J. Jacobson, J.T. Lewandowski, J.W. Jhonson, J. Less-Common Met. 116 (1986) 137.

- [3] S.N. Ruddlesden, P. Popper, Acta Crystallogr. 10 (1957) 538;
 S.N. Ruddlesden, P. Popper, Acta Crystallogr. 11 (1958) 54.
- [4] J.M. Longo, J.A. Kafalas, Mater. Res. Bull. 3 (1968) 687.
- [5] J. Darriet, M.A. Subramanian, J. Mater. Chem. 5 (4) (1995) 543.
- [6] L.M. Kovba, M.V. Paromova, Vestn. Mosk. Univ. Ser. Khim. 2 (1970) 621;
 - J. Krüger, Hk. Müller-Buschbaum, Rev. Chim. Miner. 20 (1983) 456;

J. Krüger, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 512 (1984) 59;

Hk. Müller-Buschbaum, M. Scheikowski, Z. Anorg. Allg. Chem. 591 (1990) 181;

Hk. Müller-Buschbaum, O. Schrandt, J. Alloys Compds. 191 (1993) 151.

- [7] R.V. Shpanchenko, E.V. Antipov, L.N. Lykova, L.M. Kovba, Vestn. Mosk. Univ. Ser. Khim. 45 (1990) 29.
- [8] R.V. Shpanchenko, A.M. Abakumov, E.V. Antipov, L.M. Kovba, J. Alloys Compds. 206 (1994) 185.
- [9] K. Yamaura, P.D. Young, T. Siegrist, C. Besnard, C. Svensson, Y. Liu, R.J. Cava, J. Solid State Chem. 158 (2001) 175.
- [10] N. Tancret, P. Roussel, F. Abraham, J. Solid State Chem., 2003, submitted for publication.
- [11] C. Dussarat, J. Pompeyrine, J. Darriet, Eur. J. Solid State Inorg. Chem. 31 (1994) 289.
- [12] F. Grasset, M. Zakhour, J. Darriet, J. Alloys Compds. 287 (1999) 25.
- [13] F. Grasset, C. Dussarat, J. Darriet, J. Mater. Chem. 7 (9) (1997) 1911.

- [14] M. Rath, Hk. Müller-Buschbaum, J. Alloys Compds. 209 (1994) 239.
- [15] J. Wilkens, Hk. Müller-Buschbaum, J. Alloys Compds. 171 (1991) 255.
- [16] S-T. Hong, A.W. Sleight, J. Solid State Chem. 132 (1997) 407.
- [17] M. Neubacher, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 609 (1992) 59.
- [18] M. Neubacher, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 602 (1991) 143.
- [19] J. Wilkens, Hk. Müller-Buschbaum, J. Alloys Compds. 179 (1992) 187.
- [20] J. Wilkens, Hk. Müller-Buschbaum, Acta Chem. Scand. 45 (1991) 812.
- [21] J. Wilkens, Hk. Müller-Buschbaum, J. Alloys Compds. 184 (1992) 195.
- [22] Ch. Lang, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 587 (1990) 39.
- [23] SAINT Plus Version 6.22, Bruker Analytical X-ray Systems, Madison, WI, 2001.
- [24] R. H. Blessing, SADABS2.03: Program for absorption correction using SMART CCD based on the method of Blessing, Acta Crystallogr. A 51 (1995) 33.
- [25] A. Altomare, G. Cascaro, G. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Gamalli, J. Appl. Crystallogr. 27 (1994) 135.
- [26] V. Petricek, M. Dusek, JANA2000, Institute of Physics, Praha, Czech Republic, 2002.
- [27] I.D. Brown, in: M. O'Keefe, A. Navrotsky (Eds.), Structure and Bonding in Crystals, Vol. II, Academic Press, New York, 1980, pp. 1–30.
- [28] M.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [29] C. Dussarat, F. Grasset, R. Bontchev, J. Darriet, J. Alloys Compds. 233 (1996) 15.
- [30] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244.
- [31] F. Abraham, J. Trehoux, D. Thomas, Mater. Res. Bull. 12 (1977) 43.
- [32] F. Abraham, J. Trehoux, D. Thomas, Mater. Res. Bull. 13 (1978) 805;

A. Cotton, C.E. Rice, J. Solid State Chem. 25 (1978) 137.

[33] Y. Doi, M. Wakeshima, Y. Hinatsu, A. Tobo, K. Ohoyama, Y. Yamagushi, J. Mater. Chem. 11 (2001) 3135.

- [34] D. Verdoes, H.W. Zandbergen, D.J.W. Ijdo, Acta Crystallogr. C 41 (1985) 170.
- [35] Y. Doi, K. Matsuhira, Y. Hinatsu, J. Solid State Chem. 165 (2002) 317.
- [36] Y. Doi, Y. Hinatsu, J. Mater. Chem. 12 (2002) 1792.
- [37] M. Rath, Hk. Müller-Buschbaum, J. Alloys Compds. 210 (1994) 119.
- [38] Y. Doi, Y. Hinatsu, Y. Shimojo, Y. Ishii, J. Solid State Chem. 161 (2001) 113.
- [39] J.T. Rijssenbeek, Q. Huang, R.W. Erwin, H.W. Zandbergen, R.J. Cava, J. Solid State Chem. 146 (1999) 65.
- [40] P. Lightfoot, P.D. Battle, J. Solid State Chem. 89 (1990) 174.
- [41] J. Darriet, M. Drillon, G. Villeneuve, P. Hagenmuller, J. Solid State Chem. 19 (1976) 213.
- [42] J. Darriet, J.L. Soubeyroux, A.P. Murani, J. Phys. Chem. Solids 44 (3) (1983) 269.
- [43] H.W. Zandbergen, D.J.W. Ijdo, Acta Crystallogr. C 40 (1984) 919.
- [44] K.E. Stitzer, M.D. Smith, W.R. Gemmill, H.-C. zur Loye, J. Am. Chem. Soc. 124 (2002) 13877.
- [45] E. Quarez, M. Huvé, F. Abraham, O. Mentré, Solid State Sci. 5 (2003) 951.
- [46] S-T. Hong, A.W. Sleight, J. Solid State Chem. 128 (1997) 251.
- [47] P.D. Battle, S.H. Kim, A.V. Powell, J. Solid State Chem. 101 (1992) 161.
- [48] J. Darriet, R. Bontchev, C. Dussarat, F. Weill, B. Darriet, Eur. J. Solid State Inorg. Chem. 30 (1993) 287.
- [49] E. Quarez, O. Mentré, Solid State Sci. 5 (2003) 1105.
- [50] E. Quarez, F. Abraham, O. Mentré, J. Solid State Chem., 2003, in press, Corrected proof, Available online 30 September 2003.
- [51] P.C. Donohue, L. Katz, R. Ward, Inorg. Chem. 4 (3) (1965) 306.
- [52] A. Santoro, I. Natali Sora, Q. Huang, J. Solid State Chem. 151 (2000) 245.
- [53] M.V. Rama Rao, V.G. Sathe, D. Sornadurai, B. Panigrahi, T. Shripathi, J. Phys. Chem. Solids 62 (2001) 797.
- [54] A.H. Carim, P. Dera, L.W. Finger, B. Mysen, C.T. Prewitt, D.G. Schlom, J. Solid State Chem. 149 (2000) 137.
- [55] C.H. De Vreugd, H.W. Zandbergen, D.J.W. Ijdo, Acta Crystallogr. C 40 (1989) 1987.
- [56] E.J. Cussen, J. Sloan, J.F. Vente, P.D. Battle, T.C. Gibb, Inorg Chem. 37 (1998) 6071.